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Towards developing areawide
semiochemical-mediated, behaviorally-based
integrated pest management programs

for stored product insects

William R Morrison III," © Erin D Scully © and James F Campbell

Abstract

With less emphasis on fumigation after harvest, due to the phase-out of methyl bromide and increasing phosphine resistance,
diversified postharvest integrated pest management (IPM) programs are needed. Here, we synthesize knowledge on
semiochemical-mediated, behaviorally-based tactics, wherein semiochemicals are deployed to manipulate pest behavior to
protect commodities. We note that beyond monitoring, commercial use is limited to mating disruption targeting mostly moths.
In total, behaviorally-based tactics have been attempted for eight species of stored product insects from two orders and six
families. Eighteen challenges were identified that may have prevented robust implementation of semiochemicals for
behaviorally-based management in stored products, including direct competition with ubiquitous food cues, and the diverse
insect assemblages that colonize food facilities. Further, we discuss the scientific data and methods required to support stake-
holder acceptance of semiochemicals at food facilities, including demonstrating that pests are not attracted from the landscape
and minimal spillover around pheromones. We sketch a robust areawide behaviorally-based IPM program after harvest, and
clarify properties for improving semiochemicals, including incorporating those that are broad spectrum, competitive with food
cues, potent at low concentration, and exhibit dose-dependent attraction. The research gaps and testable hypotheses
described here will speed developing behaviorally-based tactics at food facilities.
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Supporting information may be found in the online version of this article.
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as due to the arrival of new infested raw or processed materials
at a food facility, which may introduce or expand infestations.”®
For the sake of this contribution, a food facility is any facility
involved in storing, processing, selling, or consuming food. Insects
can also regularly immigrate into facilities from the surrounding
landscape.” The relative contribution of insects from the land-
scape and those from receiving infested goods on infestation at
food facilities likely varies among facilities and over time. How-
ever, captures outside a facility are often linked later with captures

1 CHALLENGES FOR FOOD FACILITIES
IN THE 21ST CENTURY

1.1 Value and losses in the postharvest supply chain

Production for just corn, soybean, and wheat alone account for over
$86 billion USD each year, while value-added products like wheat
flour amount to an economic worth of $40 billion USD." Last year
in the United States, 16.5 billion bushels (~ 427.8 million metric tons)
of corn, soybean, and wheat were stored off and on-farm.2 Despite

the significant portion of the economy for which the postharvest
supply (e.g. stored, transported, processed, marketed, and delivered
to consumers) accounts, relatively less research attention and fund-
ing have been invested in it than in protecting commodities prior to
harvest. Nonetheless, in this postharvest supply chain, significant
losses in both quantity and quality of commodities can be incurred
through attack by a large variety of insects. Each year global posthar-
vest losses account for roughly $100 billion USD,? and depending on
the resources available to stakeholders, this may range between 2
and 60% losses of crops after harvest .*°

1.2 Challenges in the IPM of stored products
For many food facilities, the insect pest species richness is abun-
dant® and composition can vary unpredictably over time as well
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inside food facilities; Trogoderma variabile Ballion (Coleoptera:
Dermestidae) marked outside facilities were later recaptured
inside and marked individuals moved between 21 and 508 m.°
Likewise, Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae)
was found to have a diet that consisted of both starchy food and
lignin-rich food, indicating frequent switching between woody
hosts and stored maize when adjacent to food facilities.'

* Correspondence to: WR Morrison Ill, USDA-ARS Center for Grain and Animal
Health Research, 1515 College Avenue, Manhattan, KS 66502, USA.
E-mail: william.morrison@usda.gov
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Moreover, poor sanitation can increase the potential for infesta-
tion and spread."’ Many stored product insect species are well-
adapted to finding and exploiting very small amounts of food,'?
and may be distributed in small accumulations of food through-
out a facility.”® Colonization of packaged goods and movement
of insects among infested packages in a facility may also contrib-
ute to pest problems.'

In addition to these system level constraints, for much of the
20" century, integrated pest management (IPM) programs for
food facilities primarily relied on frequent fumigation with methyl
bromide,”>'® which was cheap, easy to apply, and highly effec-
tive, making it an attractive mitigation tactic. However, it is an
ozone depleting substance and under the Montreal Protocol use
of this fumigant was eliminated for most postharvest applications
such as treating structures by the early 2000s. Historical overreli-
ance on this strategy made it difficult to substitute novel IPM tac-
tics at food facilities, but since this point, there has been a strong
push by the industry to develop alternative tactics and
compounds.'”

Along with methyl bromide, another commonly used fumigant
has been phosphine.'® For the last couple decades, there has
been an overreliance on phosphine for commodity treatments,
and there are increasing challenges to its use. Top among these
is increasing worldwide resistance to the compound by at least
eight species of insects from 250 locations in 60 countries.'® Ris-
ing resistance is threatening the continued efficacy of phosphine
in places where it is primarily used such as bulk storage where
there have been fewer attempts to significantly diversify IPM pro-
grams. This represents a potential opportunity to decrease reli-
ance on phosphine in this area in order to preserve its efficacy
as a tool of last resort. Phosphine is also not quite as versatile as
methyl bromide, because it will readily corrode exposed copper
wiring in facilities, which makes use in some structures difficult.’®

Other fumigants that were readily available for use in food facil-
ities during the 1980s are either no longer registered, or no longer
produced due to a combination of health and environmental
safety reasons.'® To deal with the phase-out of methyl bromide
and the drawbacks of phosphine, there has been a concerted
attempt to develop replacements, including sulfuryl fluoride,'®
ethyl formate,?® and others, but only sulfuryl fluoride has seen
wide adoption to date and each alternative fumigant has its draw-
backs. Meanwhile, there has been increasing demand by con-
sumers for commodities that are insecticide-free or have
reduced residues.?’ Consumers are even willing to spend more
for such postharvest commodities, including cereals, flour, and
others. These trends track with the exponentially growing organic
industry, which has reached a value of $90 billion over two
decades.”?

1.3 Semiochemical-mediated, behaviorally-based
management

The collective result of all these factors is a push to diversify IPM
programs for food facilities away from the historical overreliance
on a few fumigants. IPM is a holistic system of pest management
that integrates control across types of tactics and commodities to
manage pests in a cost-effective way below economic injury
levels.”® One way to diversify IPM programs is by investing in
and developing semiochemical-mediated, behaviorally-based
(hereafter, simply behaviorally-based) management tactics. For
this contribution, the term behaviorally-based tactic encom-
passes a whole suite of techniques (Supporting Information
Table S1) including five management tactics and one monitoring
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tactic that use various classes of semiochemicals to manipulate
pest insect behavior to achieve a desirable outcome, usually the
protection of commodities. The purpose of this review is to dis-
cuss the current state of the art in behaviorally-based manage-
ment programs for stored product insects, as well as concretely
extend the discussion by examining what robust implementation
of behaviorally-based tactics may look like at a food facility. In par-
ticular, we discuss challenges to behaviorally-based tactics at food
facilities, traits required of semiochemicals in such tactics, current
research gaps, including the research needed to make tactics
effective while minimizing risks that might be associated with
use of attractants. We also highlight potential concerns in adop-
tion of behaviorally-based tactics by stakeholders as well as exam-
ples of research data that is needed to assuage those concerns.
While we focus on semiochemical-mediated tactics, we mention
work with other kinds of stimuli (e.g. tactile, visual, sound, gusta-
tory, etc.) where appropriate for successful implementation of tac-
tics. It is our hope that this article generates testable hypotheses
and renews momentum for developing behaviorally-based tactics
to protect commodities after harvest.

2 EXISTING BEHAVIORALLY-BASED
MANAGEMENT STRATEGIES AND
CHALLENGES FOR STORED PRODUCTS

2.1 Overview

Monitoring and mass trapping results in tens of millions of USD in
costs for lures and has been adopted on 10 million ha in prehar-
vest agricultural systems, while attract-and-kill has been adopted
on 1 million ha.>* Meanwhile, pheromone-based mating disrup-
tion adoption has increased by 75% in recent years for many sys-
tems, especially preharvest agriculture covering over 750 000 ha
globally.?® Thus, in other agricultural systems, particularly high-
value small fruit, pome fruit, and stone fruit crops, there has been
significant work in developing behaviorally-based management
strategies.’ 28 A considerable amount of attention has been paid
in stored product entomology to the use of pheromones and
incorporating pheromone-based technology,>*3° with differing
amounts of success. By far the most successful implementation
of behaviorally-based strategies has been through the adoption
of semiochemical-based monitoring programs and mating dis-
ruption at food facilities. Semiochemical-based monitoring pro-
grams have been extensively discussed elsewhere,?*>° and will
not be the focus of this contribution. Finally, while sterile insect
technique through the release of irradiated males is a viable tech-
nique in other areas of entomology,®’ there has been no work
done with this technology in stored products, stakeholder accep-
tance of releasing any type of insect (e.g. even beneficials) is low
after harvest in many parts of the world, and it does not primarily
rely on semiochemicals to manipulate pest populations, so we do
not discuss this in the rest of our contribution.

2.2 Summary of behaviorally-based management in

stored products

Other than semiochemical-based monitoring programs, there
have been a number of semiochemical-mediated, behaviorally-
based management tactics attempted for stored product protec-
tion. In total, different behaviorally-based management tactics
have been evaluated for eight species of stored product insects
from two orders and six families (Table 1). While attract-and-kill
and mass trapping have been investigated in various contexts
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for multiple species, there has been little adoption in the food
industry.®* Management of the same species using mating disrup-
tion has been much more successful, with commercial products
available, and is regarded as highly effective (Table 1). It is inter-
esting to note that four of the five species for which there are mat-
ing disruption tools are moths. Mating disruption may primarily
target moths because adults are short-lived, whereas many stored
product beetles are long-lived, presenting more opportunities for
finding mates and thwarting mating disruption technology.®>®° In
addition to the biological limitations, there may be some regula-
tory considerations that have resulted in mating disruption only
being available for pyralid moths in stored products. This is
because the US Environmental Protection Agency (USEPA)
includes an exemption for the class of moth pheromone used
by some stored product moths that makes it significantly easier
to obtain approval for commercial products.

Further, despite limitations of mating disruption with longer-
lived species, there has been significant progress made with
Lasioderma serricorne (F.),°%°%%7 and progress has been made in
obtaining a registration for use of this technology by the USEPA,
though it is already registered in Japan (Lindenmayer, pers.
comm.). The main attractant for mating disruption of
L. serricorne has been 7-hydroxy-4,6-dimethyl-3-nonanone
(e.g. serricornin) (Table 1). Prior research has also found that other
components of the species pheromone such as (25,35)-
2,6-diethyl-3,5-dimethyl-3,4-dihydro-2H-pyran
(e.g. anhydroserricornin) may also be attractive,®® but recent
research has called this into question when assessing the com-
pound's ability to attract conspecifics to traps.*® There has also
been interest in developing mating disruption for Trogoderma
spp..> but there has not yet been any successful implementation.
This may provide further impetus for why additional kinds of
behaviorally-based tactics should be developed. Laboratory trials
using simulated field conditions have been used for evaluating
attract-and-kill of Plodia interpunctella (Hibner), but there has
been no commercially adopted system. The overall lack of
behaviorally-based tactics is in spite of 58 known pheromones
for stored product insects (45 for Coleoptera and 13 for Lepidop-
tera).”® By contrast, only 27 species have documented attraction
to the currently available commercial lures,”® which conforms to
prior estimates of 20 to 30 pheromones available for stored prod-
uct insects.”!

There have been nine kill mechanisms evaluated in mass trapping
and attract-and-kill (Table 1), including fogging machines, microen-
capsulated insecticide, insecticide-incorporated netting, and ento-
mopathogenic agents. For example, timed misters were used to
deliver pyrethrin to L. serricorne that were attracted to sprays with
7-hydroxy-4,6-dimethyl-3-nonanone  (e.g. serricornin).3® Later,
attract-and-kill-based interception traps were evaluated at commer-
cial food facilities in Kansas and Arkansas, and traps with long-last-
ing insecticide netting resulted in few to no progeny from insects
that colonized the grain in the trap.>® The entomopathogen Beau-
veria bassiana was used in an auto-dissemination attract-and-kill
device where male Plodia interpunctella would pick up spores, then
subsequently infect females.*® The use of entomopathogens was
particularly creative, because it employed a kill mechanism whose
effects subsequently rippled out to other individuals in the same
population with no prior contact to the device. Over recent years,
there have been enormous strides forward in incorporating insecti-
cides into other controlled release materials, such as insecticide-
incorporated packaging,’? and they are currently being evaluated
in areawide suppression of pest populations in simulated
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warehouses. However, there has been an overall lack of research
on including insecticide packaging or diatomaceous earths as kill
mechanisms in behaviorally-based tactics. In particular, diatoma-
ceous earth has been shown to have additive and/or synergistic
effects when combined with other kill mechanisms like entomo-
pathogens, and may be a suitable synergist for other insecticides.*?

For repellents, there has been a lot of laboratory work with over
200 compounds and 160 plant extracts tested for activity on stored
product insects, but there has been very little field efficacy work on
repellency. There have been multiple reviews on the use of plant
products for control of stored product insects, thus we have
avoided extensive discussion of this work.”>”* By contrast, there
has been no work with push—pull strategies that we are aware of
in stored products, and only one on the stored product insect,
lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrioni-
dae), but in poultry houses.®? In this single example, 1,4-benzoqui-
none, 2-methyl-1,4-benzoquinone, and 2-ethyl-1,4-benzoquinone
was combined in a 1:249:750 ratio and acted as the ‘push’, while
a six-component aggregation pheromone consisting of (R)-limo-
nene, (E)-ocimene, 2-nonanone, (S)-linalool, (R)-daucene, and (E,E)-
farnesene in a ratio naturally produced by males acted as the ‘pull’.
The push—pull system resulted in 5-12-fold more A. diaperinus cap-
tured in pitfall traps compared to a ‘pull’ system alone.®?

2.3 Challenges and potential solutions to

implementation of behaviorally-based management in
stored products

We have aggregated low, moderate, and critical severity chal-
lenges (defined in Table 2) that may have slowed progress
towards robust development of behaviorally-based tactics. Chal-
lenges were placed in these categories based on our joint expert
opinion about (i) how easily they might be overcome; (ii) how per-
vasive a problem would be across food facilities in the postharvest
supply chain; and (iii) the behavioral requirements for a particular
behaviorally-based strategy, and whether abiotic, biotic, and
logistical considerations in the postharvest supply chain would
complicate the challenge further.

To summarize, we found that these challenges fell into four cat-
egories, including: (i) technological (33%); (i) commercialization
(22%); (iii) logistical (39%); and (iv) cultural (6%) (Table 2). Further,
we acknowledge there may be some overlap in these categories,
for example, with some logistical challenges also potentially
being challenges to commercialization. However, in total 18 chal-
lenges with implementation were identified. Of those, 33 and 28%
were classified as critical or moderate severity, respectively, while
39% were classified as low or variable severity.

2.3.1 Critical challenges

Among the critical challenges is encouraging stakeholder accep-
tance of using attractive semiochemicals in and around food facil-
ities, which is discussed separately in a standalone section below
because of its special importance. However, in brief, this is a com-
plex topic, because this challenge consists of a combination of
stakeholder concerns about attracting pests to their facility and
a lack of definitive data that conclusively shows whether the use
of these pheromones would increase immigration of insects into
food facilities and cause infestations. More data are needed to
determine whether these devices do not draw insects in from
the field and whether they could result in increased infestations.
Notably, this perception may be changing, because there has
been widespread adoption of pheromone trapping and growing
use of mating disruption.> Another critical severity challenge is

wileyonlinelibrary.com/journal/ps
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Table 2. List of potential challenges to implementing behaviorally-based tactics at food facilities, their severity, and some proposed solutions

ID Tactic(s) Type® Challenge Possible severityb Potential solution(s)

1 All Cul. Stakeholder concern about Critical Data examining distance of
attracting pests to sites of attraction, area of aggregation,
food production and and proportion of attracted
storage individuals that are killed/

retained

2 Mass trapping, mating Log. Regular immigration of Critical Incorporation of other integrated

disruption insects into a food facility pest management (IPM) tactics
from the landscape such as residual insecticides and
long-lasting insecticide netting;
evaluate degree of impact of
immigration on tactic and what
levels are needed to negative
impact success of tactic
3 Mass trapping, mating Log. Regular arrival of already- Critical Incorporation of other IPM tactics
disruption infested commodities at a such as residual insecticides and
facility long-lasting insecticide netting

4 All Log. Large diversity of insects Critical Lures will need to be broad
invading food facilities spectrum in attraction or else

multiple kinds of lures will need
to be used

5 Attract-and-kill, push—pull, Tec. Direct competition of Critical Incorporates a relatively unique

mass trapping attractants with (e.g. non-food), highly attractive
ubiquitous food odors in stimulus
environment

6 Push-pull, repellents Tec. Lack of long-distance Critical Deploy repellents near protected
repellents that will not commodities but outside of
impart off-odors to facility; find repellents that
commodities humans cannot perceive, but

which insects can, and which do
not impact processing or end-use

7 All except mating disruption Com. Efficacy gap between Moderate Direct comparisons in whole
behaviorally-based systems should be made for
management and facilities under conventional
conventional tactics compared to behaviorally-based

management

8 All Com. Additional expenses to Moderate Target behaviorally-based
deploy tactics management to value-added

facilities or later in the
postharvest supply chain; include
lower cost attractive stimuli to
decrease costs of lures,
optimizing placement; evaluate
duration of impacts to cost of
implementation

9 All Com. Semiochemical lure Moderate Improving lure dispenser or
longevity formulation

10 All Log. High pest population Moderate Incorporation of other IPM tactics
abundance

1 Attract-and-kill, push-pull, Tec. Ability of abundant food Moderate Augmenting tactics with additional

mass trapping, repellents refugia as sites of stimuli including gustatory;
reproduction (e.g. beyond increased sanitation protocols
olfactory stimuli) to
undercut tactics

12 Attract-and-kill, push—pull Com. Dose-dependent increase in Low Data on stimuli that scale with dose
kill with additional stimuli

|
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ID Tactic(s) Type® Challenge Possible severityb Potential solution(s)
13 Mass trapping, mating Log. Colonization by pest insects Low Better sanitation
disruption of sites of spillage, food
dust accumulation, and
refugia
14 All Log. Discrete enclosed Low Depending on tactic, could be
environments (e.g. deployed outside of enclosed
buildings, bins, and other space; tossed in; or hung from an
structures at a food facility) opening
15 All Log. Unregulated abiotic Low Improving lure dispenser or
conditions within facilities formulation or deploying outside
of enclosed spaces
16 All Tec. Patchy distribution of pest Low Data on plume reach; devices to
species and individuals actively disperse pheromone;
targeting deployment of tactic to
problem areas; or area-wide
implementation
17 Attract-and-kill, mass Tec. Differences in movement Low Refining trap design so that it is
trapping among species (walking behaviorally compatible with the
versus flying, slow versus targeted species
fast, etc.)
18 Mating disruption Tec. Permeation of environment Variable Calculating pheromone plume

with pheromone

dispersion and reach

2 Types of challenges are classified as follows: technological (Tec.), cultural (Cul.), commercialization (Com.), and logistical (Log.).

b Severity levels defined as follows, low — challenge easily overcome or circumvented with little time or resources; moderate — with some investment
of effort and research, challenge may be overcome; critical - a key challenge that will require a significant investment of time and research and that, if
not overcome, may lead to a tactic not being successful; variable — severity depends on type of food facility.

the ubiquitous presence of already attractive food cues at many
facilities. The background odors in an area may change behavior
exhibited by insects that perceive a particular volatile.”> More
importantly, this challenge means that potential stimuli need to
be even more attractive or be present in concentrations that are
more attractive than the primary food source of these pest species
to be effectively used in behaviorally-based tactics at food facili-
ties. This may be difficult in some cases, because one of the most
effective lures in many ground-based, commercial pitfall traps is a
mix of grain oils.”*”” However, some pernicious, but widespread
species, like the red flour beetle, Tribolium castaneum (Herbst),
may have inconsistent response to these stimuli depending on
population or physiology (e.g. age or mating status).”® A chal-
lenge for mating disruption and mass trapping may be the regular
immigration of insects into a food facility. High immigration from
surrounding areas may significantly decrease the efficacy of mat-
ing disruption in particular.5® While the impacts of mating disrup-
tion on immigration are poorly understood in stored products,
others?®°37% have pointed out that the use of mating disruption
does not necessarily prevent the immigration of insects into a
treated food facility, emphasizing the need for ongoing monitor-
ing programs. In fact, high immigration of insects from the land-
scape also presents a threat to other IPM tactics such as
fumigation, which is often viewed as a treatment of last resort.
After fumigation, insect populations may quickly rebound after
application through immigration.2®3" However, one of the key
advantages of deploying mating disruption in food facilities over
in-field settings is the fact that most spaces are enclosed, which
may at least reduce immigration relative to other systems. At
least equally as important at food facilities is the arrival of new
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already-infested materials, which presents an additional critical
challenge to the success of mating disruption and mass trapping.

To date, just a single push-pull system has been evaluated for a
stored product insect species, but none in stored product environ-
ments. One of the critical challenges for a push—pull system or
repellency will be identifying and testing repellent compounds that
do not transfer off-odors into the commodities they are supposed
to protect. While a large variety of compounds have been identified
as repellents to stored product insects, these have been almost
exclusively aromatic botanical oils,2? and we are not aware of many
attempts to characterize how they may affect the sensory proper-
ties of the commodities for end consumers. In addition, there are
only infrequent attempts to characterize the specific chemical com-
ponents involved in the repellency within the essential oil mixtures,
and there are generally issues with botanical oil stability in other
systems when deployed in the field® Furthermore, botanical
extracts often have to be applied in high concentrations to be
effective,® have generally only been tested in a laboratory
context,®> may be repellent at some concentration but attractive
at another, and/or they may only exhibit contact repellency?*
and not long-distance repellency. Other possible sources of repel-
lents include alarm pheromones (e.g. benzoquinones),®? oviposi-
tion-deterring pheromones (such as those produced by
L. serricorne, Sitophilus spp. or others), hormone analogs, or antifee-
dants. It is unlikely that hormone analogs would function as repel-
lents in stored products. The most common juvenile hormone
analog is S-methoprene, which is effective at disrupting develop-
ment as a biorational insecticide, but has not shown evidence of
repellency.”® Regardless of whether plant compounds or these
other cues are used, repellents must be identified that can be
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perceived by insects, but which do not affect processing of food
products, and which are not detectable by humans in the final
products. There has been some work to incorporate repellents into
barriers for packaging, and these have shown promise in laboratory
assays,®> but may actually be less effective at repelling in the field
when attractive odors are also around. Another alternative is to
deploy repellents away from protected commodities, perhaps on
the outside of a structure, while avoiding enclosed spaces with
the commodities to avoid imparting off-odors.

Finally, the last critical severity challenge for most of the
behaviorally-based tactics is that there is a large diversity of insects
invading food facilities.® For example, traps with grain at commer-
cial food facilities captured 14 stored product insect taxa.>® These
various taxa may have idiosyncratic responses to stimuli. For exam-
ple, Rhyzopertha dominica males and females oriented differently
(and inversely) to their pheromone, and while males showed no
specific orientation to another male that was producing aggrega-
tion pheromone 1 day after emerging, they were actually repelled
2 days afterwards.2® Taking these sort of patterns into account for
10 to 20 species when designing behaviorally-based tactics may
be exceedingly difficult. To combat this, behaviorally-based strate-
gies will need to use stimuli that are broad spectrum (e.g. are effec-
tive for multiple species), or at least specific combinations of
species that are problematic for a given type of facility.

2.3.2 Moderate challenges

Additionally, there are five challenges classified as moderate
severity (Table 2). One of these is potentially high local insect
abundance around food facilities. It is well-known that
behaviorally-based management tactics tend to break down
under high population pressure.®” However, behaviorally-based
tactics should be implemented in the context of holistic IPM pro-
grams to provide multiple hurdles to pest infestation. Thus, incor-
poration of other types of tactics may ameliorate this issue. For
example, structural fumigations and intensive sanitation pro-
grams could drive high population levels down, while proper seal-
ing could reduce immigration, allowing behaviorally based
programs to maintain low population levels and reduce new
infestations. Another moderate challenge may be the additional
expenses, knowledge, and time necessary to deploy
behaviorally-based strategies and/or investment in education of
stakeholders in how to effectively deploy tactics. While some
pheromones are easy to synthesize, other types of pheromone
lures (especially high dosage ones) can be expensive,?” because
it is difficult to isolate and purify specific stereoisomers for effec-
tive usage against pests as in the case of 7-hydroxy-4-
6-dimethyl-3-nonanone (e.g. serricornin).®® However, costs for at
least some species have come down significantly over time,
though this is likely partially a function of pheromone chemistry.
Larger compounds containing more stereoisomeric centers are
often harder to purify. Other potential solutions are to replace
some of the pheromones in a lure with lower cost attractive stim-
uli and/or target behaviorally-based strategies to value-added
parts of the postharvest supply chain where facilities may have
more money to spend on pest management, or where economic
losses may be the greatest. In addition to costs associated with
pheromone production, there is the inherent difficulty in the asso-
ciated chemical analysis, as well as assessing insect physiology,
and behavior in a suite of tests that often must span from labora-
tory to the field in an iterative approach. This process may delay
advances by months or years.
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Another moderate challenge may be that food sources at a facil-
ity where insects are feeding are in direct competition with any
additional stimuli deployed at a facility." In this case, lures could
be augmented with additional stimuli such as gustatory, visual, or
tactile cues. For example, it is known that Tribolium castaneum,
L. serricorne, and some moths are positively phototactic.2~°" Fur-
ther, prior work has found that the most attractive wavelength of
light to Tribolium castaneum was 390 nm, and that its inclusion
increased trap capture by 19% over traps with just a pheromone
lure.”> Moreover, Tribolium castaneum were found to visit tall,
dark, vertical silhouettes, and trap capture was elevated with traps
placed against a dark compared to a white background.®® Visual
stimuli have also been evaluated for other stored product species,
including psocids,® but there has generally been low adoption of
light stimuli because of cumbersome cords, lack of electricity in
some areas of food facilities, and the fact that some facilities keep
their lights on permanently, reducing the effectiveness of light
stimuli. As a result, adoption of light traps has been relatively
low in the postharvest environment. However, new, smaller, more
energy efficient light-emitting diodes (LEDs) are being released
that have potential to renew the push for incorporating light stim-
uli. Alternatively, sanitation protocols could be more regular and
improved at a facility so there are fewer food sources and sites
of spillage or food dust accumulation.

Furstenau and Kroos® recently discussed the efficacy gap
between alternative and conventional tactics that must be over-
come in order to increase adoption of biologically-based tactics,
which we have included here and classified as a moderate chal-
lenge (Table 2). It is important that any behaviorally-based man-
agement approach be compared to the conventional system
alternative in order to provide convincing data that alternative
tactics are equally or more effective than existing management
tactics. Finally, another moderate challenge is to improve the lon-
gevity of semiochemicals used in lures. It is important that
behaviorally-based strategies be low maintenance, and if semio-
chemicals are in a slow release formulation, there will be fewer
lure changes and reduced costs for stakeholders, which may
improve adoption. This may be done by improving the lure matrix
or dispenser functionality (e.g. timed misting, etc.). Specifically,
semiochemicals can be extruded in a matrix that restricts diffu-
sion according to the size of the specific pheromone, while for
multi-component pheromones, two different matrices may be
required to achieve appropriate release rates.

2.3.3 Low severity challenges

Lastly, six challenges were identified as low severity (Table 2),
which may be easier to overcome than the ones mentioned ear-
lier. For example, the temperature inside rice mills is generally
1 °C warmer than the surrounding environment, though this is
significantly more during cooler times of the year;”” nevertheless,
activity of Tribolium castaneum inside rice mills generally corre-
lates with the mean temperature outside the mill, and tempera-
ture differences may not always be consistent2' Over 5 years,
the internal air temperature in flour mills was consistently warmer
than the external air temperature, but the magnitude of this var-
ied by season, with facilities separated by a few degrees in sum-
mer and 20-25 °C in winter.® By contrast, this may not be
consistently true for other types of food facilities. Changes in tem-
perature outside the facility may also modulate risk of immigra-
tion from the external environment, with correspondingly lower
risk in winter, for example. However, these warmer inside temper-
atures may result in faster depletion of lures and more frequent
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maintenance for traps. Food facilities often consist of discrete
enclosed environments, which may require that lures are
deployed in multiple locations, or deployed in different ways
depending on whether they are intended to protect bulk storage
or structures. Air flow around different types of facilities may also
be important for the dispersion of pheromone, and while it has
been evaluated for at least a single species and trap type,”®
research should be expanded in this area, as it remains an impor-
tant gap in knowledge about optimal placement of lures. Some
facilities may have ‘no entry’ grain bins (e.g. where no access is
permitted once the bin has been filled with commodity), which
may prevent certain kinds of management. Clustered and patchy
distribution of pests®® may mean that lures must have a long
plume reach, that devices to actively disperse the pheromone
may be required, or that area-wide implementation of tactics
may be needed.

3 POTENTIAL CONCERNS ABOUT USE OF
ATTRACTANTS AND THEIR MITIGATION AT
FOOD FACILITIES

3.1 Postharvest facilities as sources of food cues

Some stakeholders have expressed varying levels of concern that
the use of attractants in facilities could draw insects into facilities
and subsequently cause infestations that would not otherwise be
there. This is a valid concern, and should be addressed directly by
incorporating applicable experiments during the development
and assessment of behaviorally-based strategies at food facilities.
Nevertheless, our working hypothesis is that there are a variety of
attractive odors already at facilities by virtue of handling food
commodities (Fig. 1(A)). For example, in the main processing
and bulk storage structures, there are an abundant amount of
food kairomones emitted that may then drift outwards, attracting
pests from the landscape. Most food postharvest storage struc-
tures, including grain bins, elevators, warehouses, and others are
not airtight, and during windy days, even an attempted phos-
phine fumigation may fail, because wind blows it out from the
structure.”’ Likewise, even food facilities with strict sanitation pro-
tocols may have sites of spillage, which emit their own blend of
volatiles (Fig. 1(A)), and may contain a mix of food cues as well
as microbially-produced volatiles with enhanced attractive prop-
erties to stored product insects.

Sites of spillage are not just emitting volatiles, but are also sites
of reproduction for insects, which may colonize them, and then
individuals may emit aggregation pheromones as in the case of
many stored product beetles’® (Fig. 1(A)). For example,
R. dominica (F.), the lesser grain borer, emitted almost 20-times
more aggregation pheromone and in a different ratio of stereoiso-
mers when on a favorable host, such as those likely to be found at
a food facility, when compared to a host found in a natural land-
scape.”® When R. dominica males were seeded on hosts, many
more conspecifics were attracted to the males producing aggre-
gation pheromone on wheat than on wild hosts.”® Thus, initial col-
onization of a spillage site by R. dominica, may result in
subsequent colonization by more conspecifics, which may ulti-
mately spill over into the protected commaodities at food facilities.

With these abundant stimuli permeating the space around a
food facility, it is still unknown from how far insects will be
attracted to a location, or how frequently they are, but it is quite
clear that some species disperse on the order of multiple to many
kilometers,'® and likely frequently.'®" While recent research has
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shown that walking insects can only respond to attractants from
within a very short distance,'®? it is expected this may be farther
for insects orienting while flying during long-range dispersal.”
In addition, surrounding a food facility, there may also be hosts
or field crop production in the environment that emit attractive
volatiles and act as refugia for dispersing insects (Fig. 1(A)). The
volatiles from the landscape are neither expected to be as attrac-
tive nor as abundant as those produced by food commodities at
food facilities, and insect response is not expected to be as
strong.”® Thus, food facilities stand out as highly preferred areas
in some landscapes where attractive semiochemicals (including
food kairomones and insect pheromones) have, for all intents
and purposes, already been deployed in large amounts from the
insect's perspective.

3.2 Managing risk and addressing stakeholder concerns
The challenge in reassuring stakeholders with the deployment of
additional semiochemicals lies in generating scientifically and
economically valid data. Food facilities are already an attractive
location for stored product insects, so the question becomes
how that ‘risk’ should be managed. While sanitation and sealing
may reduce risk, it will probably not eliminate it. An additional tac-
tic may be to add more attractive odors in different locations at a
facility to manipulate insect movement patterns and distribution
to be more favorable to the protection of stored durable goods.
Thus, food facilities have the opportunity to turn insect behavior
against the pests by manipulating which populations move
where and when.

However, this requires first generating, then presenting detailed
information to stakeholders on a variety of topics in multiple ways
to reassure managers at food facilities that they are not endanger-
ing their operations (Table 3). One of the top concerns by stake-
holders may be bringing in insects in from the landscape that
would not otherwise be there. This can easily be evaluated
through mark-release-recapture studies'® and a better under-
standing of factors that influence dispersal of insects around food
facilities, pheromones, and traps. Another concern may be spill-
over of insects into a commodity near a pheromone source, which
could be determined by assessing the zone of aggregation.?® The
spillover of individuals near a trap or pheromone may be the
result of taxis to the stimulus being terminated when some
threshold concentration of the stimulus is reached, as is common
with aggregation pheromones.’®’° These individuals may then
encounter sites of spillage adjacent to the pheromone source or
trap, decide to oviposit, and then produce progeny in the spillage
as discussed with R. dominica earlier. Other stakeholders may be
more concerned with progeny production in and near a trap,
which could be determined by rigorously testing the kill mecha-
nism in the trap.'®* When there is any discussion of odors diffusing
and permeating a space, stakeholders will often want to ensure
that there are no deleterious effects on finished products from
the commodities. This could be performed for example by conven-
ing a sensory panel to evaluate any off-odors associated with prod-
ucts made by commodities exposed to such odors (e.g. as has
been done with other pest management techniques'®), though
this may become very complex at large facilities where the sheer
number of commodities managers deal with is large.

Importantly, the cost-benefit ratio of using behaviorally-based
tactics needs to be considered in appropriate context for each food
facility. For example, there may be less willingness to adopt inten-
sive tactics for bulk storage or at points near the beginning of the
supply chain, but more willingness if dealing with high-value
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Figure 1. (A) Food odor plumes (kairomones, teal) in and around a food facility, including from the protected commodity (c), sites of food spillage (s),
natural host refugia in the landscape (r), and preharvest commodities in the field (f); pheromones (orange) may also be produced by pest insects that have
infested commodities (p). Size of the plume corresponds with expected strength of attraction by stored product insects. In an unguarded facility, pests are
expected to directly be able to immigrate and infest commodities. (B) vision for a robustly implemented behaviorally-based IPM program, including mat-
ing disruption (MD) to protect the main commodity within structures (orange), attract-and-kill based interception traps at the perimeter of the facility
(red), a repellent to ‘push’ away insects from the main buildings (blue), attractants deployed in adjacent areas or unused land to ‘pull’ pests that have been
diverted (yellow), and semiochemical-baited traps for long-term monitoring of pest pressure at key parts of the facility (purple). The size of pheromone
plume is proportional to reach of semiochemicals deployed. In a facility guarded by behaviorally-based tactics, pests are expected to be diverted away

from protected commodities.

commodities subject to consumer complaints near the latter end.
Another potential concern may be worker safety when in an
enclosed space with a large amount of pheromone, for example
dedicated to mating disruption or the safety of food in spaces that
have been treated with large amounts of pheromone. However,
Lepidopteran pheromones generally have negligible mammalian
toxicity, and there is a strong track record of safety of mating disrup-
tion programs,’ ° with the USEPA stating that up to 2001, there had
been no safety incidents with pheromones by workers.'®” This is in
stark contrast to existing tactics in stored products, such as fumiga-
tion with phosphine, which is comparatively much more hazardous
to worker's health if mistakes are made in applications.

An important concern may be whether behaviorally-based tactics
are equally effective against both phosphine-resistant and
phosphine-susceptible populations. Recent research has demon-
strated there may be consistent differences in some mobility

parameters among phosphine-resistant and -susceptible popula-
tions.'® For example, susceptible R. dominica were found to move
significantly faster than resistant conspecifics, while susceptible
R. dominica and Tribolium castaneum showed reduced climbing
capacity compared to resistant strains. Moreover, susceptible
R. dominica made more flight attempts than resistant conspecifics.
By contrast, there were no consistent in most mobility parameters
for T. castaneum.'® These consistent differences in mobility among
strains and species raise the possibility that behaviorally-based tac-
tics may be more or less effective when targeting certain groups of
insects. If resistant R. dominica are slower and less likely to initiate
flight, then it is possible that a semiochemical-based trap may be
less likely to effectively capture and remove them from the foraging
population. Thus, when evaluating behaviorally-based tactics, eval-
uations should be made with both phosphine-resistant and
-susceptible populations.
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A list of potential stakeholder concerns about deploying a behaviorally-based tactic at a food facility, and potential research to alleviate

Proposed solution

Bringing in insects that would not otherwise be
present

Spillover of insects into commodity
Ability of insects to reproduce in or near trap
Cost of deployment (time and money)

Semiochemicals imparting off-odors to
commodities

Safety profile of semiochemicals to workers and
food safety

Knowledge required to effectively deploy tactics by
food facilities or pest control companies

Education and adoption in distant or remote
operations

Effectiveness of behaviorally-based tactics against
phosphine-resistant insect populations

Lastly, rigorous, forward-looking, and comprehensive education
programs will need to be undertaken to support adoption of new
technology, both for direct stakeholders in the postharvest supply
chain and for pest control operators who may be in charge of pest
management programs at specific sites. This may involve the
development of high-quality education and extension informa-
tion delivered through multiple media to be able to reach remote
locations. Multi-tiered, complex IPM programs are already being
developed in high-value specialty crops such as for tree fruit,'®
thus it may be worthwhile for stored product entomology to look
to other systems as a model for how to improve adoption of holis-
tic IPM programs.

4 A VISION FOR ROBUST
BEHAVIORALLY-BASED MANAGEMENT
STRATEGIES FOR STORED PRODUCTS

Up to this point, there has been no clearly articulated vision for
areawide implementation of behaviorally-based tactics at post-
harvest food facilities. However, in other systems, it is clear that
a variety of tactics are possible and highly effective. As more
information is developed about semiochemicals and their effec-
tiveness in and around food facilities, it will become increasingly
possible to deploy them singly or in concert to systematically
manipulate pest populations and protect commodities, depend-
ing on the type of facility (Fig. 1(B)). For example, mating disrup-
tion, attract-and-kill, and push-pull could all be simultaneously
deployed to provide multiple hurdles against pest infestation
at a facility (Fig. 1(B)), and coupled with monitoring traps. This
could work by protecting enclosed structures with commodities
using mating disruption, assuming mating disruption can be
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Evaluate distance of attraction by insects to a food facility,
and identify environmental factors that affect plume
reach and trapping area

Determine area of aggregation around pheromone source

Consider progeny production in and near traps

Ensure cost-benefit ratio makes sense; collaborate with
agricultural economists

Evaluate strategy with sensory panel to confirm no off-
odors imparted on finished products

Assess safety of semiochemicals and treated commodities
in animal models; where possible, use biorational
semiochemicals or those with very low mammalian
toxicity

Produce high quality outreach and extension materials,
develop comprehensive education programs to
communicate information

Increase accessibility of extension materials, communicate
in multiple formats, development of a mobile app for
stored product integrated pest management (IPM)

When collecting data on behaviorally-based tactics,
include assessments of both phosphine-resistant and
-susceptible populations

expanded to other key species successfully. Central structures
with commodities could additionally be protected with a repel-
lent to ‘push’ immigrating insects away that could then be
diverted (e.g. ‘pulled’) into adjacent plots with attractive stimuli
and coupled with ways to remove individuals from the foraging
population, or to at least retain them. On the perimeter of the
area with the commodities, a line of attract-and-kill-based inter-
ception traps could be deployed to divert any insects not already
captured by stimuli in adjoining areas. Finally, monitoring traps
with small dosages of attractive stimuli could be deployed in
key locations to provide long-term data on insect abundance
within the perimeter of the facility to identify specific problem
areas, as has been done already with commercial rice facilities,
flour mills, and other facilities.””#%""® With multiple different
stimuli, deployed in a variety of ways at different scales, and
incorporating multiple types of kill mechanisms, these
behaviorally-based tactics could significantly strengthen exist-
ing IPM systems. They may also function to help ameliorate pest
problems brought into a facility from commodities that were
infested elsewhere by redirecting where insects move once a
commodity is stored. Their adoption may prevent the develop-
ment of insecticide resistance, and might significantly decrease
the need for fumigation, especially if implemented along with
other IPM strategies, such as grain protectants, aerosols, residual
sprays, fumigation,'® and other novel tactics.>*'"! However, it is
clear that behaviorally-based tactics must be tailored to individ-
ual food facilities, and only those tactics that are compatible with
existing management efforts and facility operations should be
used. Finally, this also means that the use of behaviorally-based
management tactics cannot impede food quality or result in ele-
vated measures of insect presence (e.g. insect-damaged kernels,
insect fragments, etc.) during inspections after a shipment of
commodity leaves a facility.

wileyonlinelibrary.com/journal/ps


http://wileyonlinelibrary.com/journal/ps

®)
SCI

where science
meets business

WWW.50Ci.org

5 NEEDS FOR NOVEL STIMULI AND
SYSTEMS IN FUTURE BEHAVIORALLY-

BASED STRATEGIES FOR STORED

PRODUCTS

5.1 The case for novel stimuli in stored products

Before this vision can come to fruition, currently known stimuli will
need to be more available, and be used more efficiently. In addition,

we also require more effective, novel stimuli. Fifty-eight pheromones
are known from stored product insects, but commercially available

WR Morrison Ill, ED Scully, JF Campbell

lures only attract 27 species.’”® Increasing the number that are com-
mercially available would be a good first step in allowing for the
development and evaluation of behaviorally-based tactics. There is
strong interest in developing behaviorally-based tactics for a variety
of species, including for biosurveillance of the quarantined Trogo-
derma granarium (Everts)''?>"""* and an emerging pest of concern
to industry, red-legged ham beetle, Necrobia rufipes (De Geer).'"® In
some cases, it may be not be commercially feasible to produce a par-
ticular kind of pheromone if there is not a robust market for
it. However, increased and close collaboration among government,

Table 4. Summary of optimal stimuli, traps, and kill mechanisms for behaviorally-based management tactics

Traits of optimal

Tactic Stimuli

Trap Kill mechanism

Attract-and-kill Attractive to a large diversity of species,
long-lasting, inexpensive, attracts
individuals to a very spatially restricted
area with no spillover into commodity,
dose-dependent attraction, range of
attraction is around a food facility but
does not bring in insects from farther

away

Effective against multiple species, large
plume reach and good dispersion
without human intervention, just one
deployment necessary for a season,
inexpensive to deploy, effective even at
lower concentrations

Attractive to a large diversity of species at
low dosages, long-lasting, inexpensive,
attracts individuals to just the trap with
no spillover into commodity, range of
attraction is around a food facility but
does not bring in insects from farther
away, low density of traps required

Mating disruption

Mass trapping

Repellent must be effective at low
concentrations, not impart off-odors to
commodities that they are protecting
and/or have no deleterious effects on the
sensory qualities of end products, and
must repel at longer distances

Both attractant and repellent required.
Attractant as for attract-and-kill above.
Repellent must be effective at low
concentrations, not impart off-odors to
commodities that they are protecting
and/or have no deleterious effects on the
sensory qualities of end products, and
must repel at longer distances

Repellency

Push—-pull

wileyonlinelibrary.com/journal/ps

Knockdown and kill is
immediate or rapid,
contact ensures no

Behaviorally-compatible with
multiple species, compact, easily
deployed without special

equipment, impervious to
weather or grain dust;
alternatively, no trap needed,
applied as gel

None required

Trap consists of an effective existing
commercially-available design
that can also be used for
monitoring

None required

Trap only required for ‘pull’ part in
adjacent location. Behaviorally-
compatible with multiple species,
easily deployed without special
equipment, impervious to
weather, dirt, or grain dust;
alternatively, no trap needed,
applied as gel, crop, or container
of commodity

© 2021 Society of Chemical Industry

progeny production,
recovery unlikely, multiple
active ingredients
available to be able to
rotate and prevent the
development of resistance

None required

Knockdown and kill is

immediate or rapid,
contact ensures no
progeny production,
recovery unlikely, multiple
active ingredients
available to be able to
rotate and prevent the
development of resistance

None required

Kill mechanism only required

for the ‘pull’ part.
Knockdown and kill is
immediate or rapid,
contact ensures no
progeny production,
recovery unlikely, multiple
active ingredients
available to be able to
rotate and prevent the
development of
resistance; alternatively,
retention is permanent
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academia, and industry will help leverage existing and new technol-
ogy into strong, reliable behaviorally-based tools.''®

Finally, there is still a need for novel, improved stimuli to manip-
ulate the behavior of stored product insects. For some species,
particular kairomones may range from strong attraction to no
attraction at all, as in the case of Tribolium castaneum.”® While
the odors of intact or damaged grains have been found to be
attractive to a variety of species,''” and are suitable for use in
monitoring traps,/*%® they may not be ideal candidates in
behaviorally-based tactics at food facilities, because of competi-
tion with background food odors (e.g. Challenge #5 in Table 2).
We have compiled properties of optimal stimuli for use in a range
of behaviorally-based tactics (Table 4). In some cases, the proper-
ties of optimal stimuli are similar among different behaviorally-
based tactics, while in others, there may be unique properties that
make a particular volatile more suitable for one approach over
another. In focusing on novel stimuli, these traits should be prior-
itized and included in evaluations. Such novel stimuli may also
serve to lure insects out of hiding in commodities or spillage
and into the open or a trap inside a facility, where they can be
managed better or eliminated from the foraging population.

5.2 Future directions

One promising suite of candidate compounds may be
microbially-produced volatile organic compounds (reviewed in
Davis et al."'®). These microbial volatiles may originate primarily
from bacteria and fungi present on commodities. Prior work has
shown that microbial volatiles from fungi are attractive to a range
of stored product cucujid beetles,'’® as well as other stored prod-
uct species.?® The ability of stored product insects to respond to
microbial volatiles may be conserved across a range of stored
product insect lineages as a result of their shared evolutionary his-
tory.”® Many stored product insects originally fed on small animal
(e.g. mammals, birds, insects, etc.) caches of food before the
advent of anthropogenic agriculture; one cue that may have been
present in most of these caches was the presence of microorgan-
isms emitting volatiles, because caches were often in moist envi-
ronments, and animals have been shown to frequently forget
where they store their food."?’

There has been ongoing work attempting to engineer plants to
produce certain volatiles for the benefit of pest management,'*?
and similar ecological engineering may be possible using
microbes.'?* Optimizing microbial volatile emissions by a micro-
bial species, while minimizing its detrimental effect on stored
grain, may allow for the use of self-renewing volatile sources in
a behaviorally-based trap that may have the potential to last lon-
ger and be more effective than conventional lure formulations.
Unfortunately, little work has explored this potential avenue in
the context of stored products.

Importantly, there may also be other novel classes of stimuli,
such as those from wood volatiles. While some stored product
insects evolved as feeders on animal caches, others such as Pros-
tephanus truncatus,'® originally evolved as pests of woody vegeta-
tion. Recent work has found volatile bouquets from the woody
species, Castanea crenata, Magnolia obovata, Paulownia tomen-
tosa, Prunus jamasakura, and Zelkova serrata were equally or more
attractive to Tribolium confusum du Val than food cues, including
various types of flour.'** These volatiles may also be relatively
unique at food facilities, and serve as useful new stimuli for inclu-
sion in behaviorally-based tactics.

In order to identify promising bouquets, microbial species, or spe-
cific compounds, a streamlined chemical ecology workflow should
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be used. One way to comparatively more efficiently screen com-
plex microbial (and other) blends of headspace volatiles for poten-
tial new attractive compounds may be to use a gas chromatograph
coupled with an electroantennographic detector'®® to determine
those compounds detected by a variety of stored product insects
of different lineages, and then to follow-up with a subset of consen-
sus compounds that are perceived by major species using rapid
behavioral assays.”® Some of these rapid assays may include
2-min trials per individual to assess taxis in a wind tunnel*® or min-
iature wind tunnel,''? as has been done in prior work for stored
product insects. Finally, the most promising compounds with
greatest attraction or repellency should be validated in realistic
field tests. While this may not be a trivial amount of work, it is
important to do in order to move the state of the art forward.

This contribution has laid out a framework for proceeding with
the development of behaviorally-based tactics. Some of the key
challenges, stakeholder concerns, and properties of ideal stimuli
may be used as a starting point for further research on this topic.
Whatever the specifics of new behaviorally-based tactics, it is clear
that (i) they should be cost-effective for stakeholders, (ii) not
endanger the protection of commodities in the postharvest sup-
ply chain, and (iii) be easy to implement with limited training or
expertise. There has been an increasing recognition that you can-
not uncouple the cultural systems responsible for agriculture from
the biological components, and thus, obtaining stakeholder buy-
in for these programs, and leveraging connections with other
parts of the research enterprise will become increasingly impor-
tant in the future. Furthermore, it will also become more impor-
tant to evaluate behaviorally-based strategies in the context of
other environmentally-friendly IPM tactics such as heat treat-
ments, aeration,'?® and others in order to provide multiple hur-
dles against pest infestation. Overall, while there is still much
work to do in developing behaviorally-based tactics for stored
products, it is clear that these tactics have much potential to help
alleviate the losses of key fumigants for protection of
commodities.
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